Новости OFC 2024. 12-пространственно-канальная передача WDM / SDM на трансокеанское расстояние

Многожильное оптоволоконное соединение прокладывает путь к подводным волоконно-оптическим кабелям большей пропускной способности

САН-ДИЕГО — Исследователи добились передачи с мультиплексированием по длине волны / пространственному разделению (WDM / SDM) на трансокеанское расстояние 7280 км с беспрецедентными 12 пространственными каналами, используя связанное многожильное волокно со стандартным диаметром оболочки. Это достижение открывает новые возможности для увеличения пропускной способности современных подводных кабельных систем с использованием оптоволоконной технологии, которая не занимает много места.

Это исследование, проведенное в сотрудничестве с NEC Corporation и NTT Corporation в Японии, будет представлено Манабу Арикавой из NEC Corporation на OFC, главном мировом мероприятии в области оптической связи и сетевых технологий, которое пройдет как гибридное мероприятие 24-28 марта 2024 года в Конференц-центре Сан-Диего.

“Подводные кабельные системы являются жизненно важной инфраструктурой для нашей жизни, соединяющей мир через океаны; будущие кабели требуют все большей пропускной способности из-за экспоненциально растущего глобального спроса на трафик”, — сказал Арикава. “Результат этого исследования может привести к увеличению пропускной способности подводных кабелей, снижению стоимости передаваемого бита и повышению эффективности подключения за счет значительного увеличения количества пространственных каналов при одинаковом количестве оптических волокон в кабелях”.

WDM и SDM используются для максимального увеличения пропускной способности и эффективности волоконно-оптических систем связи. WDM работает путем одновременной передачи нескольких сигналов по одному оптическому волокну, назначая каждому каналу уникальную длину волны света, тогда как SDM использует отдельные пространственные тракты или оптоволоконные сердечники для передачи нескольких потоков данных по одному оптическому волокну или по разным волокнам.

Для подводных кабелей было продемонстрировано достижение более 10 пространственных каналов только на расстояниях передачи до 1001 км по 15-модовому волокну или 1560 км по 10-модовому волокну. Задача достижения передачи с высоким пространственным коэффициентом на трансокеанские расстояния состоит в том, чтобы найти способ уменьшить пространственную модовую дисперсию (SMD) и модозависимые потери (MDL) линии передачи. Многоядерные волокна являются хорошими кандидатами для этого, поскольку каждое из их нескольких отдельных ядер может иметь оптический канал связи, позволяющий осуществлять параллельную передачу данных. По сравнению с несвязанной версией, соединенные многожильные волокна могут вмещать гораздо больше жил в стандартной оболочке диаметром 125 мкм.

В новой работе исследователи осуществили передачу WDM / SDM с использованием формата модуляции PDM-QPSK со скоростью 32 Гбод по рециркуляционному контуру, состоящему из одного 12-жильного волокна длиной 52 км (C12CF) со стандартным диаметром оболочки. После определения оптимальной входной мощности span они оценили эффективность передачи в трех диапазонах длин волн в C-диапазоне.

Они наблюдали безошибочную передачу после прямой коррекции ошибок для длин волн до 7280 км (140 петель) для 1536,6 нм и до 9360 км (180 петель) для 1550,9 нм и 1560,6 нм в конфигурации с однопролетным контуром. Они также продемонстрировали пространственную модовую дисперсию в 0,1 нс и модозависимые потери в 0,3 дБ на 52-километровый интервал C12CF, а также относительно низкую зависимость от длины волны.

“Одним из следующих важных шагов является оценка крупномасштабной обработки с несколькими входами и несколькими выходами (MIMO) в режиме реального времени с точки зрения будущей реализации приемопередатчика MIMO для оптической связи”, — сказал Арикава. Другой важной темой является влияние MDL волокон на количество пространственных каналов и масштабируемость для характеристики и преодоления этого ограничения пропускной способности в будущем.

Новости OFC 2024. Прогнозирование отказов оптических волокон

Исследование показывает перспективность датчиков на основе приемопередатчиков для активного мониторинга оптоволоконных сетей

Исследователи успешно использовали прототип когерентного приемопередатчика для обнаружения изменений поляризации, которые предшествовали разрыву кабеля в сети под напряжением. Работа, которая является одной из первых демонстраций полевых измерений активного обрыва кабеля, демонстрирует потенциал датчиков на основе приемопередатчиков для активного мониторинга и повышения стабильности оптоволоконных сетей.

Использование глобальной оптоволоконной сети в качестве датчика может помочь повысить надежность сети за счет предоставления системам сетевого управления информации об окружающей среде вокруг каждого оптоволоконного тракта или линии связи в режиме реального времени. При обнаружении существенных изменений могут быть использованы превентивные меры для перенаправления данных или отправки ранних предупреждений, предотвращающих повреждение сети.

“Мы все подвержены перебоям в подключении и легко расстраиваемся из-за них, и поэтому защита оптоволоконной сети имеет первостепенное значение”, — сказал Микаэль Мазур, технический сотрудник отдела передовых фотонных исследований Nokia Bell Labs. “Сегодня наши возможности по смягчению последствий обрывов волокон ограничены из-за отсутствия датчиков, способных отслеживать физическую среду в режиме реального времени. Без этого управление на сетевом уровне ограничивается устранением последствий отключения, а не принятием профилактических мер. Это справедливо для любых отключений, вызванных человеческим фактором, таким как некачественные строительные работы, или неконтролируемыми событиями, такими как плохая погода. Наши результаты демонстрируют, что когерентные приемопередатчики с дополнительными возможностями распознавания могут восполнить этот пробел, обеспечивая масштабируемый путь для внедрения интеллектуальных оптоволоконных сетей будущего ”.

Мазур представит это исследование, которое стало результатом сотрудничества Nokia Bell Labs в США и Технологического университета Чалмерса и Sunet в Швеции, на OFC, главном глобальном мероприятии в области оптических коммуникаций и сетевых технологий, которое пройдет в виде гибридного мероприятия 24-28 марта 2024 года в Конференц-центре Сан-Диего.

Исследователи использовали мониторинг когерентного приемника для выполнения постфактум анализа результатов, полученных в сети в режиме реального времени во время обрыва оптоволокна, который произошел, когда экскаватор случайно обнажил оптоволоконный кабель во время строительства. Линия связи протяженностью 524 км включала пять реконфигурируемых оптических мультиплексоров дополнительного подключения (ROADMs) и в основном состояла из воздушного волокна. Обрыв произошел на более коротком заглубленном участке, который соединял узлы ROADM с местами расположения линий электропередачи.

Мониторинг волокна осуществлялся путем передачи совместно распространяющегося сигнала от прототипа когерентного приемопередатчика на основе программируемой в полевых условиях матрицы вентилей (FPGA) по действующим каналам когерентных данных в сети. Базовые измерения показали, что большинство изменений поляризации происходят на частотах около 1 Гц, что хорошо согласуется с изменениями окружающей среды.

Примерно за 5-7 минут до того, как произошел разрыв, наблюдалось высокочастотное звучание, достигавшее 50 Гц. Хотя точная причина этого изменения неизвестна, вероятно, это связано со строительными работами, которые привели к разрыву волокна. Исследователи отмечают, что колебания поляризации, наблюдавшиеся до разрыва, были сильнее, чем любые другие колебания, наблюдавшиеся в течение недельного периода до фактического разрыва.

“Подобные исследования по своей сути состоят из мониторинга неконтролируемой реальной среды, и вся связанная с этим сложность не может быть воспроизведена в лабораториях или средах моделирования”, — сказал Мазур. “Поэтому внедрение этих функций в наши когерентные приемопередатчики жизненно важно для быстрого масштабирования и обеспечения возможности превентивного зондирования по всей оптической сети. С точки зрения исследований мы очень рады видеть, что эти функции появятся в продуктах в ближайшем будущем ”.

 

Приглашаем на конференцию «Волоконная оптика — основа ….

Коллеги, приглашаем вас на  VII Конференцию «Волоконная оптика — основа цифровизации России. Сделано в России, работает на Россию. Вся волоконная Россия»
Конференция запланирована в рамках Деловой программы выставки «Связь 24 » — 25 апреля 2024 г
 Павильон №2, зал семинаров №4

Предварительная программа конференции (секции)

1.   Волоконная оптика – основа цифровизации России.

2.  Новое время, новые задачи.   

3.   Как дела, Россия?  Сделано в России, работает на Россию.Вся волоконная Россия. 

4.    Измерения в волоконной оптике. Идеи, патенты, новшества.   

5.    Разное. 

 

Открыта регистрация на конференцию. 

Для регистрации отправить письмо на нашу почту fotonexpress@mail.ru c темой «конференция» и ваши контакты

 

Инженеры UCL установили новый мировой рекорд скорости интернета — 178 Тбит/с

Самая высокая в мире скорость передачи данных была достигнута исследователями Университетского колледжа Лондона (UCL) под руководством доктора Лидии Галдино из отдела электроники и электротехники UCL. Работая с Xtera и KDDI Research, исследовательская группа достигла скорости передачи данных в 178 Тбит / с, скорости, с которой можно было бы загрузить всю библиотеку Netflix менее чем за секунду.

UCL заявляет, что рекорд, который в два раза превышает пропускную способность любой системы, развернутой в настоящее время в мире, был достигнут за счет передачи данных в гораздо более широком диапазоне длин волн, чем обычно используется в оптоволокне. Текущая инфраструктура использует ограниченную полосу пропускания спектра 4,5 ТГц, при этом на рынок выходят коммерческие системы с полосой пропускания 9 ТГц, тогда как исследователи использовали полосу пропускания 16,8 ТГц.

Чтобы сделать это, исследователи объединили различные технологии усилителей, необходимые для увеличения мощности сигнала в этой более широкой полосе пропускания и максимальной скорости, разработав новые созвездия геометрической формы (GS) (шаблоны комбинаций сигналов, которые наилучшим образом используют фазу, яркость и поляризационные свойства света), манипулируя свойствами каждой отдельной длины волны. Это достижение описано в новой статье в журнале IEEE Photonics Technology Letters.

Преимущество технологии заключается в том, что ее можно экономически эффективно использовать в существующей инфраструктуре за счет модернизации усилителей, расположенных на оптоволоконных маршрутах с интервалом 40-100 км. Исследователи говорят, что модернизация усилителя обойдется в 16 000 фунтов стерлингов (21 000 долларов США), в то время как установка новых оптических волокон в городских районах может стоить до 450 000 фунтов стерлингов (600 000 долларов США) за километр.

Новый рекорд, продемонстрированный в лаборатории UCL, в пять раз быстрее предыдущего мирового рекорда, установленного командой в Японии. Скорость близка к теоретическому пределу передачи данных, установленному американским математиком Клодом Шенноном в 1949 году.

Ведущий автор доктор Лидия Галдино, преподаватель Калифорнийского университета в Лос-Анджелесе и научный сотрудник Королевской инженерной академии, сказала: “В то время как современные соединения облачных центров обработки данных способны передавать до 35 терабит в секунду, мы работаем с новыми технологиями, которые более эффективно используют существующую инфраструктуру,улучшив использование полосы пропускания оптического волокна и обеспечив рекордную скорость передачи данных в 178 терабит в секунду.” Она добавила: “Независимо от кризиса с Covid-19, за последние 10 лет интернет-трафик увеличился в геометрической прогрессии, и весь этот рост спроса на данные связан со снижением стоимости за бит. Разработка новых технологий имеет решающее значение для поддержания этой тенденции к снижению затрат при одновременном удовлетворении будущих требований к скорости передачи данных, которые будут продолжать расти, с еще не продуманными приложениями, которые изменят жизнь людей ”.

Эта работа финансируется Королевской инженерной академией, Исследовательским грантом Королевского общества и грантом программы EPSRC TRANSNET (EP / R035342 / 1). Исследователи являются членами группы оптических сетей UCL и Института коммуникаций и подключенных систем UCL.

Для получения дополнительной информации посетите www.ucl.ac.uk

По материалам Optical Connection

«Фотон-Экспресс»№8, 2022

Orange тестирует семиядерное волокно со скоростью 11,2 Т

Инновационная лаборатория Orange Polska совместно с Infinera и InPhoTech group недавно протестировала многоядерное волокно и технологию ICE6 800G Infinera. Infinera утверждает, что пропускная способность, полученная в ходе испытаний, в семь раз превышала максимальную, которую можно достичь сегодня при использовании стандартного оптоволоконного кабеля.

Разработанное InPhoTech group в сотрудничестве с Университетом Марии Кюри-Склодовской в Люблине и при поддержке Кластера фотоники и волоконной оптики, многоядерное волокно позволяет передавать данные по семи параллельным ядрам одновременно. Это означает, что его пропускная способность в семь раз больше, чем у стандартного телекоммуникационного волокна. Такие оптические волокна будут производиться в Любартуве компанией IPT Fiber от InPhoTech group.

Infinera заявляет, что тесты показали, что ее аппаратное обеспечение позволяет передавать данные со скоростью 800 Гбит / с по одному каналу передачи. В эксперименте, проведенном в сотрудничестве с Orange, использовались два канала, по которым одновременно передавались данные со скоростью 1,6 Тбит/с в каждое из семи ядер. Это дало общую передачу 11,2 Тбит / с. Качество сигнала, измеренное по таким параметрам, как добротность и частота ошибок в битах, полностью соответствовало применимым стандартам.

Достижение максимальной пропускной способности в 296,8 Тбит / с является результатом умножения 800 Гбит / с на 53 канала с помощью семи ядер, поскольку устройство Infinera позволяет размещать 53 канала по 800 Гбит / с каждый в одном семиядерном IPT-волокне только в C-диапазоне.

Для получения дополнительной информации посетите www.infinera.com

По материалам Optical Connection

«Фотон-Экспресс»№8, 2022

Новая разработка DSP увеличивает пропускную способность в 10 раз

Исследователи из Центра цифровой обработки сигналов (DSP) Бангорского университета говорят, что они нашли экономически эффективный способ повысить производительность сетей, которые предоставляют услуги мобильной связи и широкополосного доступа к нашим домам и предприятиям. В процессе они установили новый мировой рекорд по использованию DSP для преобразования сложных, нелинейных, низкоскоростных оптических систем передачи в простые, линейные, высокоскоростные. Результаты последних исследований, проведенных в Центре DSP в Бангоре, Северный Уэльс, демонстрируют, что 10-кратное увеличение полосы пропускания коммерчески установленных сетей доступа технически возможно на расстоянии до 100 километров за счет изменения способа обработки данных в приемнике с использованием технологии, основанной на цифровой обработке сигналов. Исследователи говорят, что наряду с улучшенной производительностью, новая технология также стала добрее на планете. Из-за отсутствия сложности метода для передачи заданного объема данных требуется меньше энергии, что приводит к меньшим экологическим затратам.

Профессор Цзяньмин Тан, директор Центра DSP, объясняет: “Используя передовую цифровую обработку сигналов, мы изменяем способ обработки сигналов в приемнике, чтобы компенсировать эффекты, которые обычно ограничивают полосу пропускания и дальность передачи. Этот подход может быть использован для модернизации существующих сетей, не требуя внесения значительных изменений в эти сети. Этот подход также позволяет развертывать в новых сетях дешевые решения с низким энергопотреблением, способные удовлетворить беспрецедентные технические требования, связанные с 5G и не только. Сейчас мы изучаем, как этот подход может быть дополнительно интегрирован с другими передовыми технологиями Центра DSP для обеспечения дополнительной сетевой безопасности путем обнаружения несанкционированных изменений в сети и несанкционированного доступа к данным, что в наши дни имеет первостепенное значение ”.

Центр DSP при Бангорском университете получил финансирование проекта в размере 3,9 млн. фунтов стерлингов от Европейского фонда регионального развития через правительство Уэльса. В дополнение к этому финансированию центр также недавно получил 3 миллиона фунтов стерлингов от сделки по развитию Северного Уэльса в качестве одного из проектов в рамках Цифровой программы. Работая с Ambition North Wales, инвестиции будут направлены на приобретение новейшего оборудования, расширение исследовательского центра и создание до 40 новых рабочих мест.

Бангорский университет является единственным исследовательским центром в Великобритании, специализирующимся на решении проблем DSP для 5G и за его пределами, и работает вместе с известными международными компаниями, такими как Vodafone, Orange, BT, Fujitsu и Ciena, а также с валлийскими / британскими МСП, над разработкой инноваций, которые революционизируют цифровые возможности как для потребителей, так и для бизнеса.

Для получения дополнительной информации посетите www.bangor.ac.uk

По материалам Optical Connection

«Фотон-Экспресс»№8, 2022

ECOC 2022: Keysight, Nokia Bell Labs, достигла рекордных 260 Гбод

Keysight Technologies и Nokia Bell Labs успешно протестировали сверхскоростную передачу оптического сигнала со скоростью 260 Гбод на 100 км стандартного одномодового волокна (SSMF) на ECOC 2022, превысив предыдущий рекорд в 220 Гбод.

Преследуя общую цель повышения производительности и эффективности сети, Nokia Bell Labs и Keysight объединили опыт с другими партнерами-исследователями для создания рекордной демонстрации когерентной передачи данных DP-QPSK 260 Гбод по одномодовому волокну длиной 100 км.

Демонстрация состояла из нового генератора сигналов произвольной формы (AWG) M8199B от Keysight со скоростью 260 ГСа / с (на фото), который обеспечивает полосу пропускания более 75 ГГц, и тонкопленочного модулятора ввода-вывода на основе ниобата лития с полосой пропускания 110 ГГц. Это позволило проводить исследования и разработки систем передачи данных со скоростью передачи символов до 260 Гбод и достигать чистой скорости передачи данных более 2 Тбит/с при когерентной оптической связи.

“Для Keysight большая честь работать с Nokia Bell Labs над достижением 260 Гбод”, — сказал доктор Йоахим Пирлингс, вице-президент Keysight по сетевым решениям и решениям для центров обработки данных. “Продолжающееся распространение ИИ требует новых уровней производительности серверов и сетей, которые должны масштабировать вычислительные ресурсы в разумных пределах энергии. Более высокие скорости передачи данных и новые форматы модуляции станут одними из перспективных технологий для отрасли ”.

“Мы достигли этого выдающегося рекорда максимальной скорости передачи символов в 260 Гбод, используя передовые технологии и опыт нескольких партнеров”, — сказал Айк Мардоян, старший научный сотрудник Nokia Bell Labs. “Этот результат является первой вехой в масштабировании систем передачи данных на большие расстояния за пределы 2 Тбит / с на длину волны. Повышение энергоэффективности транспондеров является постоянной проблемой для отрасли ”.

Для получения дополнительной информации посетите www.keysight.com .

По материалам Optical Connection

«Фотон-Экспресс»№8, 2022

OFC: ‘Нет фундаментальных ограничений’ для волокна Lumenisity hollowcore

Недавняя демонстрация максимальной производительности кабеля Lumenisity NANF® hollowcore позволяет предположить, что, по мнению компании, нет никаких фундаментальных ограничений на расстояния передачи данных. Демонстрация была проведена Туринским политехническим университетом и исследовательской группой LINKS Foundation в их совместной лаборатории PhotoNext. Используя передовую испытательную установку лаборатории, некоторые каналы достигли почти 6000 км.

Кабельные решения Lumenisity CoreSmart® hollowcore используют запатентованную технологию вложенного антирезонансного волокна без узлов (NANF). Используя последнюю версию технологии с уменьшенными интермодальными помехами (IMI), лаборатория PhotoNext сообщила о новых рекордных расстояниях передачи. в двух экспериментах с рециркуляционным контуром было использовано 11,5 км 5-ламповых NANF. Первый состоял из NANF и некоторого количества PSCF (волокна с сердечником из чистого кремнезема), где каналы C-диапазона 41xPM-QPSK со скоростью 32 Гбод циркулировали на расстоянии до 2070 км. Второй контур рециркуляции использовал только NANF, увеличив максимальную дальность действия и достигнув 4020 км, при этом несколько каналов простирались более чем на 5000 км.

Lumenisity заявляет, что ее технология CoreSmart® NANF® является надежной одномодовой, которая обеспечивает непрерывную, непрерывную, одновременную одномодовую передачу на длине волны 1310 нм, а также во всех диапазонах C и L и за его пределами, обещая реализовать значения потерь на уровне или лучше, чем у обычных волокон с твердым кремнеземным сердечником. Он добавляет, что результаты показывают, что разработка технологии NANF® существенно снизила IMI. Поскольку в ближайшем будущем потери тока (~ 1 дБ / км) будут снижены до уровней, сопоставимых со стандартными волокнами, при сохранении IMI, показанного в этих экспериментах, NANF может стать многообещающей альтернативой для высокопроизводительных систем и сетей большой протяженности.

Проф. Пьерлуиджи Поджиолини, координатор группы OptCom Туринского политехнического университета, сказал: “NANF — одна из самых захватывающих технологий в настоящее время в области оптики. Мы с самого начала поверили в это и начали тесное сотрудничество с ORC в Саутгемптоне, а теперь и с Lumenisity, чтобы доказать потенциал NANF во всех сегментах оптических систем и сетей. До сих пор результаты были фантастическими ”.

Доктор Антонино Неспола, руководитель лаборатории фотонекста Фонда LINKS, прокомментировал: “Расстояние передачи, представленное на сессии OFC после истечения срока действия в этом году, более чем в шесть раз превышает предыдущий рекорд, о котором сообщалось на OFC в прошлом году. При нынешних темпах совершенствования низкие потери и сверхнизкая нелинейность в очень широких полосах пропускания могут сделать NANF надежным кандидатом для увеличения пропускной способности и пропускной способности оптических систем следующего поколения ”.

Проф. Франческо Полетти добавил: “Технология Hollowcore за последние годы сделала гигантские шаги. На сессии OFC post deadline в 2013 году мы сообщили о передаче данных по 300 метрам фотонного запрещенного волокна. Перенесемся на восемь лет вперед, заменим технологию на NANF и добавим бесценное сотрудничество с Lumenisity и лабораторией PhotoNext, и многотысячные километры станут возможными. Предстоит еще многое сделать, но будущее hollowcore fibers выглядит блестящим ”.

Майк Фейк, директор Lumenisity, ответственный за управление продуктами, сказал: «Эти результаты в области оптоволокна дополняют те, о которых мы сообщили на этой неделе в развертываемых кабельных форматах, и еще больше укрепляют нашу уверенность в технологической платформе, которую мы выводим на рынок для сетей с высокой пропускной способностью, обещая достичь этого не только вСеть метро сегодня, но также и в приложениях с большим радиусом действия в будущем ”.

Ранее на этой неделе Lumenisity® в сотрудничестве с Ciena сообщила о передаче по контуру рециркуляции по развертываемому в полевых условиях кабелю протяженностью более 1000 км со скоростью 400 Гбит/с в диапазоне C и более 100 км со скоростью 800 Гбит/с. Более подробная информация об эксперименте PhotoNext lab должна была быть опубликована на бумажной сессии после истечения крайнего срока в OFC в пятницу, 11 июня.

Для получения дополнительной информации посетите www.lumenisity.com

По материалам Optical Connection

«Фотон-Экспресс»№8, 2022

Microsoft покупает волоконно-оптическую фирму Lumenisity

Microsoft объявила о приобретении Lumenisity® Limited, дочернего предприятия Университета Саутгемптона, которое разработало оптоволокно с полым сердечником (HCF). Кабели NANF и DNANF от Lumenisity были последовательно удостоены отраслевых наград выставки ECOC в 2021 и 2022 годах соответственно за демонстрацию наименьшего затухания, достигнутого среди всех волокон hollowcore, и в более широком диапазоне рабочих длин волн.

Объявление последовало за завершением строительства завода Lumenisity по производству ГХФ площадью 40 000 квадратных футов в Ромси, Великобритания, что, по словам компании, позволит ей в будущем расширить производство своей технологии ГХФ.

“HCF может обеспечить преимущества в широком спектре отраслей, включая здравоохранение, финансовые услуги, производство, розничную торговлю и государственные органы”, — написал в блоге Гириш Баблани, генеральный директор Microsoft Azure Core Business. “Для государственного сектора HCF может обеспечить повышенную безопасность и обнаружение вторжений для федеральных и местных органов власти по всему миру. В здравоохранении, поскольку HCF может соответствовать размеру и объему больших наборов данных, это может помочь ускорить поиск медицинских изображений, облегчая поставщикам возможность получать, сохранять и обмениваться данными медицинских изображений в облаке. А с ростом цифровой экономики HCF может помочь международным финансовым институтам в поиске быстрых и безопасных транзакций в широком географическом регионе ”.

В свете комментариев Баблани существует вероятность того, что Microsoft будет использовать оптоволокно Lumenisity hollowcore для подключения своей постоянно расширяющейся сети центров обработки данных.

Финансовые условия приобретения не разглашаются.

Для получения дополнительной информации посетите https://lumenisity.com

По материалам Optical Connection

«Фотон-Экспресс»№8, 2022

Компания STL запустила первое в Индии многоядерное оптоволокно и кабель.

Компания STL запустила, как она утверждает, первое в Индии многоядерное оптоволокно и кабель. Компания заявляет, что прорыв, получивший название «Multiverse», изменит ландшафт оптических соединений в Индии.

Multiverse предлагает ряд функций, в том числе увеличенную пропускную способность для сотовых сетей 5G, что означает возможность подключения нескольких радиоголовок через одно многоядерное волокно и сокращение занимаемой площади кабелей для сетей 5G. Также в меню — четырехъядерная оптоволоконная связь в центрах обработки данных, повышающая пропускную способность самых современных оптоволоконных кабелей примерно с 7000 ядер до 28 000 ядер, что обеспечивает возможность подключения для вычислений в масштабе склада.

STL также нацелилась на возможность квантовой связи с Multiverse, хотя в нем только говорится, что многоядерное волокно предлагает захватывающие возможности в этой развивающейся области, не вдаваясь в подробности. Однако, что касается экологичности, STL заявляет, что ее новый многоядерный кабель является самым экологичным оптическим волокном в мире, благодаря чему площадь поверхности кабеля уменьшается примерно на 75%, а толщина пластика в земле — примерно на 10%.

Выступая на презентации, Рандип Сехон, технический директор Bharti Airtel, сказал: “Я рад видеть эту инновацию в области оптического волокна от отечественной компании. Оптоволокно и кабель STL Multiverse обеспечат 4-кратную пропускную способность и сыграют жизненно важную роль в расширении сети 5G. Я желаю STL всего наилучшего за их усилия по поддержке наращивания сети”.

Комментируя запуск, доктор Бадри Гоматам, технический директор STL, сказал: “Мы проводим глубокие исследования в области оптического волокна более 15 лет. За последние три года мы смогли преуспеть в многоядерных технологиях и самостоятельно разработали этот продукт. Мы гордимся тем, что первыми в Индии запустили это. Мультивселенная STL революционизирует 5G и подключение к центрам обработки данных, масштабирует квантовые вычисления и делает Интернет более экологичным ”.

Для получения дополнительной информации посетите www.stl.tech

По материалам Optical Connection

«Фотон-Экспресс»№8, 2022

Фотон-Экспресс

Фотон-Экспресс

Фотон-Экспресс