Новое время. Новые задачи. Новые решения. 1.7пбит/с

19 оптоволоконных жил в стандартном диаметре увеличили скорость передачи данных до 1,7 петабита в секунду

Исследователи из Японии и Австралии разработали новое многожильное оптическое волокно, способное передавать рекордные 1,7 петабита в секунду, сохраняя при этом совместимость с существующей оптоволоконной инфраструктурой.

Упаковка 19 жил в одно волокно установило рекорд для оптического волокна стандартного диаметра как по дальности передачи, так и по скорости передачи данных. NICT/SUMITOMO ELECTRIC INDUSTRIES

Команда из японского Национального института информационных и коммуникационных технологий (NICT), Sumitomo Electric Industries и Университета Маккуори в Сиднее и Австралии добилась успеха, используя волокно с 19 ядрами. Это самое большое количество жил, упакованных в кабель со стандартным диаметром оболочки 0,125 микрометра.

«Мы считаем, что 19 жил — это максимальное практическое количество жил или пространственных каналов, которое можно иметь в стандартном волокне с диаметром оболочки и при этом сохранить хорошее качество передачи», — говорит Георг Радемахер, который ранее возглавлял проект в NICT, но недавно вернулся в Германию, чтобы занять должность директора по оптическим коммуникациям в Штутгартском университете.

Для растущего трафика нужны многожильные волокна

Большинство оптоволоконных кабелей, которые используют сегодня для передачи данных на большие расстояния, — это одножильные одномодовые стекловолокна (SMF). Но SMF приближается к своему практическому пределу, потому что сетевой трафик быстро растет из-за приложений искусственного интеллекта, облачных вычислений и IoT.

Поэтому многие исследователи проявляют интерес к многожильному волокну в сочетании с мультиплексированием с разделением пространства (SDM) — техникой передачи данных, которая позволяет использовать несколько пространственных каналов в кабеле.

«Пропускная способность нового волокна со случайными связями не так уж примечательна. Замечательно то, что в нем используется стандартная оболочка», — отметил Говинд Агравал, Университет Рочестера.

Существует два распространенных типа многожильных волокон (MCF). В слабосвязанном MCF жилы точно отделены друг от друга для подавления перекрестных помех. Но это обычно ограничивает количество жил, которые помещаются в кабель.

Девятнадцать жил — это оптимальный вариант

Компания Sumitomo Electric разработала и изготовила случайно соединенные MCFs, в которых сердечники намеренно расположены случайным образом. Благодаря отсутствию необходимости в точном расстоянии между жилами их можно укладывать ближе друг к другу. Это увеличивает пространственную плотность кабеля и количество используемых жил. Случайное расположение также расширяет взаимодействие между жилами, позволяя свету от одной жилы соединяться со светом от других, расположенных рядом.

Как объясняет Радемахер, сигнал, передаваемый в любую из жил MCF Sumitomo Electric, одновременно использует все 19 жил, поэтому волокно достигает большей пропускной способности за счет использования более высокой плотности пространственных каналов. Цифровая обработка сигнала с множественным входом и множественным выходом (MIMO) затем используется для разделения и демодуляции отдельных сигналов на приемной стороне.

«Девятнадцать жил — это оптимальный вариант, потому что все каналы ведут себя одинаково, чему способствует случайная связь, которая помогает усреднить колебания свойств волокна. По сравнению со слабосвязанными MCF, которые требуют индивидуальной обработки сигнала для каждого ядра, здесь требуется лишь минимальная цифровая обработка, что значительно снижает энергопотребление», — говорит Радемахер.

Количество жил можно увеличить, но тогда диаметр будет нестандартный

Независимые отраслевые обозреватели отмечают, что другие исследователи разработали нестандартное волокно с целыми 32 жилами и реализовали 1 петабит в секунду на расстоянии 200 километров.

Говинд Агравал, эксперт по оптике из Рочестерского университета в Нью-Йорке, отмечает, что слабосвязанные сердечники, поддерживающие несколько мод, достигли пропускной способности более 10 Пб/с. Опять же, для этого использовалось волокно с нестандартным диаметром оболочки, а расстояние было ограничено 11,3 км. «Этот подход также требует интенсивной автономной цифровой обработки сигнала», — добавляет он.

Использование нестандартного волокна потребует перестройки существующей инфраструктуры оптического волокна. С другой стороны, MFC со стандартной оболочкой остается совместимым с широко используемыми оптическими компонентами, оборудованием и системами и может использовать преимущества существующих методов массового производства кабелей.

«Мы считаем, что 19 жил — это максимальное практическое количество жил или пространственных каналов, которое можно иметь в волокне со стандартным диаметром оболочки и при этом сохранить хорошее качество передачи», — говорит Георг Радемахер, Университет Штутгарта.

Поставлен рекорд как по емкости данных, так и по расстоянию передачи

«Наряду с новым кабелем еще одним важным элементом установки являются оптические чипы, которые направляют свет на отдельные жилы МФЦ и собирают сигналы с жил на приемной стороне. Большинство современных оптических чипов изготавливают методами, аналогичными стандартной обработке интегральных схем на пластинах. Но это ограничивает схемы двумерной планарной структурой, которая не подходит для геометрии новых MCF», — говорит Симон Гросс, исследователь из Исследовательского центра фотоники Университета Маккуори.

Для сопряжения MCF со стандартным оборудованием SMF, которое используют в настоящее время, включая приемник передачи для сбора данных испытаний NICT, Гросс и его коллеги разработали компактный стеклянный чип с лазерной гравировкой, который включает в себя трехмерный волновод, соответствующий геометрии отдельных сердечников MCF.

«Мы используем лазер, чтобы вытравить волноводный рисунок в блоке стекла размером с ноготь. Волноводы позволяют одновременно подавать сигналы в 19 отдельных жил волокна с равномерно низкими потерями», — объясняет Гросс.

Процесс травления можно автоматизировать, и он быстрый. Нанесение надписей на волноводы для 19-ядерного MCF занимает менее 30 секунд одним нажатием кнопки, хотя на обработку и упаковку потребуется гораздо больше времени.

Чтобы продемонстрировать эффективность передачи нового MCF, компания NICT построила оптическую систему передачи в своей штаб-квартире в Коганей, Токио. Используя диапазоны C- и L-волн, а также методы кодирования сигналов, такие как поляризационно-мультиплексированные 64-квадратурно-амплитудно-модулированные (QAM) сигналы, исследователи достигли скорости передачи 1,7 Пбит/с на расстояние 63,5 км.

Это стало рекордом как по емкости данных, так и по расстоянию при использовании стандартного плакированного волокна. Чтобы разделить сигналы на приемной стороне, цифровая обработка сигналов MIMO была выполнена в автономном режиме. Результаты были представлены на 46-й конференции по оптоволоконным коммуникациям в Сан-Диего в марте 2023 года.

Экономическая проблема, с которой сталкиваются исследователи

По словам Радемахера, самая большая проблема, с которой все еще сталкиваются исследователи, скорее экономическая, чем технологическая. Потому что для коммерциализации технологии необходимо, чтобы компания инвестировала в несколько ключевых компонентов. В качестве примера он приводит специальный чип для цифровой обработки сигнала, которая в настоящее время осуществляется в автономном режиме, и необходимость в подходящих усилителях для усиления сигнала на больших расстояниях.

Агравал соглашается со своим коллегой: «Даже для короткого расстояния в 63,5 километра нынешняя цифровая обработка сигнала занимает слишком много времени, чтобы быть практичной. Но при дальнейшем развитии такие волокна, вероятно, найдут применение в телекоммуникационных системах».

 

Вышел из печати очередной номер «Фотон-Экспресс»№2(194). Как дела, Россия?

Дорогие читатели!

Перед вами очередной номер журнала «Фотон-Экспресс»№2(194) 2024.

Идет третий год СВО, наши противники делают все чтобы нанести нам максимальный ущерб. Небывалые санкции должны были, по их мнению, обрушить нашу промышленность.

Очень серьезны у нас были такие опасения – небывалое давление. А в нашей области, в телекоммуникациях, в волоконной оптике, которая на удивление находилась на передовых позициях и в значительное мере за счет очень широкого использования зарубежных технологий, — эти опасения были очень и очень большие.

Мы в «Фотон-Экспресс» именно поэтому открыли проект «Как дела Россия?»

На наш взгляд все нормально, хотя и очень сложно, но отрасль позиции не сдает (см материалы этого и последующих номеров журнала).

Проект продолжается. Поэтому кроме научных статей мы публикуем материалы «Как дела, Россия?».

В мае в рамках Деловой программы выставки «Связь -2024» мы проводим VII конференцию «Волоконная оптика – основа …». Программа конференции представлена в номере.

Особенностью конференции является тесная связь самой конференции с номерами журнала.

Материалы конференции планируются к публикации в номерах «Фотон-Экспресс». Часть таких материалов уже опубликована, в том числе и в этом номере ( см программу конференции).

Мы также предлагаем очно-заочное участие в конференции.  Пришлите информацию о вашей компании в справочник «Вся волоконная Россия» и мы разместим ее на сайте, в журнале, озвучим на конференции (секция 2) или дадим вам возможность самим озвучить (по возможности)

Регистрация на конференцию. Для регистрации отправить письмо на нашу почту fotonexpress@mail.ru c темой «конференция» и ваши контакты.

Зарегистрировавшимся  вышлем по запросу материалы конференций

Продолжим конференцию в журнале и на сайте.

А.Г. Свинцов

Некоторые материалы номера

ВОЛОКОННАЯ ОПТИКА – ОСНОВА ЦИФРОВОЙ ТРАНСФОРМАЦИИ

Цифровизация в России. О стратегии развития связи

НОВОСТИ. НЕКОТОРЫЕ ТЕНДЕНЦИИ

НОВОЕ ВРЕМЯ. НОВЫЕ ЗАДАЧИ.НОВЫЕ РЕШЕНИЯ

Нейросетевые алгоритмы как ключ к повышению точности радиофотонных методов опроса оптоволоконных датчиков температуры

 

Новости OFC 2024. Рекордная длина в 2000 км слабосвязанного 7-ядерного MCF

Рекордная длина в 2000 км слабосвязанного 7-ядерного MCF, изготовленного из одной крупномасштабной заготовки MCF

Представлен дизайн и изготовление более 2000 км MCF, вытянутых из одной крупномасштабной заготовки MCF. Волокно было изготовлено без каких-либо разрывов в режиме онлайн и демонстрирует превосходное геометрическое соответствие.

Новости OFC 2024. 12-пространственно-канальная передача WDM / SDM на трансокеанское расстояние

Многожильное оптоволоконное соединение прокладывает путь к подводным волоконно-оптическим кабелям большей пропускной способности

САН-ДИЕГО — Исследователи добились передачи с мультиплексированием по длине волны / пространственному разделению (WDM / SDM) на трансокеанское расстояние 7280 км с беспрецедентными 12 пространственными каналами, используя связанное многожильное волокно со стандартным диаметром оболочки. Это достижение открывает новые возможности для увеличения пропускной способности современных подводных кабельных систем с использованием оптоволоконной технологии, которая не занимает много места.

Это исследование, проведенное в сотрудничестве с NEC Corporation и NTT Corporation в Японии, будет представлено Манабу Арикавой из NEC Corporation на OFC, главном мировом мероприятии в области оптической связи и сетевых технологий, которое пройдет как гибридное мероприятие 24-28 марта 2024 года в Конференц-центре Сан-Диего.

“Подводные кабельные системы являются жизненно важной инфраструктурой для нашей жизни, соединяющей мир через океаны; будущие кабели требуют все большей пропускной способности из-за экспоненциально растущего глобального спроса на трафик”, — сказал Арикава. “Результат этого исследования может привести к увеличению пропускной способности подводных кабелей, снижению стоимости передаваемого бита и повышению эффективности подключения за счет значительного увеличения количества пространственных каналов при одинаковом количестве оптических волокон в кабелях”.

WDM и SDM используются для максимального увеличения пропускной способности и эффективности волоконно-оптических систем связи. WDM работает путем одновременной передачи нескольких сигналов по одному оптическому волокну, назначая каждому каналу уникальную длину волны света, тогда как SDM использует отдельные пространственные тракты или оптоволоконные сердечники для передачи нескольких потоков данных по одному оптическому волокну или по разным волокнам.

Для подводных кабелей было продемонстрировано достижение более 10 пространственных каналов только на расстояниях передачи до 1001 км по 15-модовому волокну или 1560 км по 10-модовому волокну. Задача достижения передачи с высоким пространственным коэффициентом на трансокеанские расстояния состоит в том, чтобы найти способ уменьшить пространственную модовую дисперсию (SMD) и модозависимые потери (MDL) линии передачи. Многоядерные волокна являются хорошими кандидатами для этого, поскольку каждое из их нескольких отдельных ядер может иметь оптический канал связи, позволяющий осуществлять параллельную передачу данных. По сравнению с несвязанной версией, соединенные многожильные волокна могут вмещать гораздо больше жил в стандартной оболочке диаметром 125 мкм.

В новой работе исследователи осуществили передачу WDM / SDM с использованием формата модуляции PDM-QPSK со скоростью 32 Гбод по рециркуляционному контуру, состоящему из одного 12-жильного волокна длиной 52 км (C12CF) со стандартным диаметром оболочки. После определения оптимальной входной мощности span они оценили эффективность передачи в трех диапазонах длин волн в C-диапазоне.

Они наблюдали безошибочную передачу после прямой коррекции ошибок для длин волн до 7280 км (140 петель) для 1536,6 нм и до 9360 км (180 петель) для 1550,9 нм и 1560,6 нм в конфигурации с однопролетным контуром. Они также продемонстрировали пространственную модовую дисперсию в 0,1 нс и модозависимые потери в 0,3 дБ на 52-километровый интервал C12CF, а также относительно низкую зависимость от длины волны.

“Одним из следующих важных шагов является оценка крупномасштабной обработки с несколькими входами и несколькими выходами (MIMO) в режиме реального времени с точки зрения будущей реализации приемопередатчика MIMO для оптической связи”, — сказал Арикава. Другой важной темой является влияние MDL волокон на количество пространственных каналов и масштабируемость для характеристики и преодоления этого ограничения пропускной способности в будущем.

Успешная пробная версия сверхширокополосной (115,2 ТГц) передачи данных

KDDI Research, Sumitomo Electric, Furukawa Electric и OFS Laboratories провели успешные эксперименты по передаче данных по сверхширокополосному оптоволокну с полосой пропускания 115,2 ТГц, что примерно в 24 раза шире обычного C-диапазона и является крупнейшей в мире пропускной способностью: 484 Тбит / с, более 31 км в экспериментах по передаче данных по оптоволокну с использованием стандартного диаметра оптического волокна. Это было достигнуто путем объединения несвязанного оптического волокна, имеющего 12 независимых жил, плотно расположенных в покрытии толщиной 250 мкм, такого же размера, что и стандартное оптическое волокно, вместе с широкополосным оптоволоконным усилителем O-диапазона (BDFA).

KDDI Research, Sumitomo Electric и Furukawa Electric работают над практическим применением многожильных оптических волокон, которые имеют несколько жил в одном оптическом волокне. В марте 2023 года KDDI Research, Furukawa Electric и OFS провели успешные эксперименты по когерентной передаче DWDM в O-диапазоне с использованием O-диапазона, ширина полосы пропускания которого примерно в два раза превышает ширину C- и L-диапазонов. Также в марте 2023 года Sumitomo Electric представила 12-жильное оптическое волокно с высокой плотностью несвязанных волокон с диаметром покрытия 250 мкм, что соответствует диаметру стандартных оптических волокон, что делает его идеальным для создания оптических кабелей высокой плотности. Результаты были представлены в качестве доклада после истечения крайнего срока на ECOC 2023.

Компания Sumitomo заявляет, что в эпоху 6G ожидается, что через сети будет проходить гораздо больше разнообразных данных, чем в настоящее время, из-за распространения устройств IoT (Интернет вещей) и услуг мобильности, и важно еще больше расширить возможности оптоволоконной связи для поддержки сетей. На этот раз успех связан с технологией поддержки высокопроизводительной и высокоскоростной связи между центрами обработки данных в эпоху 6G. Кроме того, та же пропускная способность может быть обеспечена меньшим количеством волоконных жил, поскольку пропускная способность на оптическое волокно может быть значительно увеличена, и ожидается, что эта технология позволит использовать обычные трубопроводы и устройства с меньшим занимаемым пространством. В будущем будут продолжены исследования и разработки приемопередатчиков, волоконно-оптических усилителей и алгоритмов цифровой обработки сигналов для практического применения сверхширокополосных систем внеполосной когерентной передачи DWDM с целью дальнейшего увеличения пропускной способности между центрами обработки данных.

Для получения дополнительной информации посетите https://sumitomoelectric.com

Самая большая (118,5 Тбит / с) в мире пропускная способность многоядерных волокон стандартного диаметра 

Разработка японских предприятий продемонстрировала самую большую в мире пропускную способность – 118,5 Тбит / с – с использованием многоядерного волокна с четырьмя оптическими путями (сердечниками) того же диаметра – 125 мкм – что и используемое в настоящее время оптическое волокно. Это достижение подтверждает концепцию многоядерной волоконной системы передачи данных на большие расстояния с большой пропускной способностью, обеспечивает значительный прогресс в практическом использовании многоядерных волоконных технологий.

Причиной интереса к многоядерным волокнам является взрывной рост спроса на пропускную способность, вызванный такими услугами, как Интернет и смартфоны. Они отмечают, что неконтролируемое увеличение количества оптических волокон и конвергенция оптических проводов, особенно в центрах обработки данных и / или центральных офисах, могут создать серьезные проблемы в будущем.

Многоядерные волокна были предметом исследований по всему миру, и были проведены эксперименты по передаче данных сверхбольшой пропускной способности, например, с демонстрацией многоядерных волокон с 10 или более сердечниками. Однако для этих многожильных волокон с большим количеством жил обычно требуется стекло большего диаметра, требуются усовершенствованные процессы изготовления и дальнейшие разработки компонентов. В результате, по словам японских исследователей, считается, что потребуется около 10 лет, чтобы сделать многоядерные волокна большого количества практичными.

В целях ускорения использования технологии многоядерных волокон NTT, KDDI Research, Sumitomo Electric, Fujikura, Furukawa, NEC и Технологический институт Тиба разработали многоядерное волокно обычного диаметра в соответствии с действующими международными стандартами. Это позволяет использовать существующую волоконно-оптическую технологию, даже несмотря на ограничение количества жил 4 или 5.

Orange тестирует семиядерное волокно со скоростью 11,2 Т

Инновационная лаборатория Orange Polska совместно с Infinera и InPhoTech group недавно протестировала многоядерное волокно и технологию ICE6 800G Infinera. Infinera утверждает, что пропускная способность, полученная в ходе испытаний, в семь раз превышала максимальную, которую можно достичь сегодня при использовании стандартного оптоволоконного кабеля.

Разработанное InPhoTech group в сотрудничестве с Университетом Марии Кюри-Склодовской в Люблине и при поддержке Кластера фотоники и волоконной оптики, многоядерное волокно позволяет передавать данные по семи параллельным ядрам одновременно. Это означает, что его пропускная способность в семь раз больше, чем у стандартного телекоммуникационного волокна. Такие оптические волокна будут производиться в Любартуве компанией IPT Fiber от InPhoTech group.

Infinera заявляет, что тесты показали, что ее аппаратное обеспечение позволяет передавать данные со скоростью 800 Гбит / с по одному каналу передачи. В эксперименте, проведенном в сотрудничестве с Orange, использовались два канала, по которым одновременно передавались данные со скоростью 1,6 Тбит/с в каждое из семи ядер. Это дало общую передачу 11,2 Тбит / с. Качество сигнала, измеренное по таким параметрам, как добротность и частота ошибок в битах, полностью соответствовало применимым стандартам.

Достижение максимальной пропускной способности в 296,8 Тбит / с является результатом умножения 800 Гбит / с на 53 канала с помощью семи ядер, поскольку устройство Infinera позволяет размещать 53 канала по 800 Гбит / с каждый в одном семиядерном IPT-волокне только в C-диапазоне.

Для получения дополнительной информации посетите www.infinera.com

По материалам Optical Connection

«Фотон-Экспресс»№8, 2022

Компания STL запустила первое в Индии многоядерное оптоволокно и кабель.

Компания STL запустила, как она утверждает, первое в Индии многоядерное оптоволокно и кабель. Компания заявляет, что прорыв, получивший название «Multiverse», изменит ландшафт оптических соединений в Индии.

Multiverse предлагает ряд функций, в том числе увеличенную пропускную способность для сотовых сетей 5G, что означает возможность подключения нескольких радиоголовок через одно многоядерное волокно и сокращение занимаемой площади кабелей для сетей 5G. Также в меню — четырехъядерная оптоволоконная связь в центрах обработки данных, повышающая пропускную способность самых современных оптоволоконных кабелей примерно с 7000 ядер до 28 000 ядер, что обеспечивает возможность подключения для вычислений в масштабе склада.

STL также нацелилась на возможность квантовой связи с Multiverse, хотя в нем только говорится, что многоядерное волокно предлагает захватывающие возможности в этой развивающейся области, не вдаваясь в подробности. Однако, что касается экологичности, STL заявляет, что ее новый многоядерный кабель является самым экологичным оптическим волокном в мире, благодаря чему площадь поверхности кабеля уменьшается примерно на 75%, а толщина пластика в земле — примерно на 10%.

Выступая на презентации, Рандип Сехон, технический директор Bharti Airtel, сказал: “Я рад видеть эту инновацию в области оптического волокна от отечественной компании. Оптоволокно и кабель STL Multiverse обеспечат 4-кратную пропускную способность и сыграют жизненно важную роль в расширении сети 5G. Я желаю STL всего наилучшего за их усилия по поддержке наращивания сети”.

Комментируя запуск, доктор Бадри Гоматам, технический директор STL, сказал: “Мы проводим глубокие исследования в области оптического волокна более 15 лет. За последние три года мы смогли преуспеть в многоядерных технологиях и самостоятельно разработали этот продукт. Мы гордимся тем, что первыми в Индии запустили это. Мультивселенная STL революционизирует 5G и подключение к центрам обработки данных, масштабирует квантовые вычисления и делает Интернет более экологичным ”.

Для получения дополнительной информации посетите www.stl.tech

По материалам Optical Connection

«Фотон-Экспресс»№8, 2022